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Construction of maximal functions associated with
skewed cylinders generated by incompressible flows and

applications

Jincheng Yang

Abstract. We construct a maximal function associated with a family of skewed cylinders. These
cylinders, which are defined as tubular neighborhoods of trajectories of a mollified flow, appear
in the study of fluid equations such as the Navier–Stokes equations and the Euler equations. We
define a maximal function subordinate to these cylinders and show it is of weak type .1; 1/ and
strong type .p; p/ by a covering lemma. As an application, we give an alternative proof for the
higher-derivatives estimate of smooth solutions to the three-dimensional Navier–Stokes equations.

1. Introduction

This paper is dedicated to the study of the maximal functions adapted to the Lagrangian
description of a flow. When studying the motion of a fluid, there are two different but
deeply connected descriptions to work with. The Eulerian formulation records physi-
cal quantities such as velocity, temperature, and pressure at fixed positions, while the
Lagrangian formulation builds the frame of reference following each moving fluid parcel,
and describes their motion and trajectories by a flow map. The transport phenomenon is
easier to describe in the Lagrangian formulation, while the diffusion usually suits the Eule-
rian description better. Let us refer to the works of Constantin ([8]), Kukavica and Vicol
([9]) for the connection and distinction between these two descriptions in the context of
Euler equations.

For both mathematical study and numerical simulation, sometimes it is necessary to
switch between two descriptions. For instance, in computational fluid dynamics, the vortex
particle method treats the fluid as a collection of vortex particles, moving along the trajec-
tories generated by the velocity field, which is in turn recovered from vortex particles. Its
early development was by Chorin on the study of the two-dimensional Navier–Stokes
equations ([5]). The validity and convergence of this vortex method in three and two
dimensions are confirmed by Beale and Majda in [1, 2]. We refer interested readers to the
books of Raviart ([17]), Cottet and Koumoutsakos ([10]), and Majda and Bertozzi ([16])
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for detailed bibliographies. Majda and Bertozzi also used the particle-trajectory method to
show existence and uniqueness results for Euler equations. Even recently, hybrid numeri-
cal schemes are still a very active area ([14]). To avoid singularities in the computation, a
mollification is applied to the velocity field. Therefore, particles are in fact moving along
approximated trajectories of this mollified flow defined in Definition 1. Mollification is
also needed for this Lagrangian formulation when the velocity field does not have enough
regularity to define trajectories and flow maps, for instance, weak solutions to Navier–
Stokes equations or Euler equations.

Before introducing our new maximal function, let us recall the classical one. For any
real-valued or vector-valued function f 2 L1loc.R

d / with d � 1, recall the classical max-
imal function Mf is defined as

.Mf /.x/ WD sup
r>0

−
Br .x/

jf .y/j dy D sup
r>0

1

jBr j

Z
Br .x/

jf .y/j dy: (1)

Here Br .x/ is a d -dimensional ball with radius r and center x, and jBr j stands for its d -
dimensional Lebesgue measure Ld . Throughout the article, we may use j � j to represent
the spatial Lebesgue measure Ld or the space-time Lebesgue measure LdC1 depend-
ing on the context. The strength of the maximal function is that it captures the nonlocal
information of a function, and in the meantime keeps the homogeneity: it commutes with
rigid motion and scaling, as well as scalar multiplication. This maximal function M is a
bounded operator on Lp for 1 < p � 1; it is also bounded from L1 to L1;1, the weak
L1 space. However, if we include a time variable t in an evolutionary problem – for
instance, a transport equation – Euclidean balls in space-time are no longer the most natu-
ral objects to work with. Instead, we may consider using a space-time cylinder, or “skewed
cylinder”, transported in the space-time, to be more rigorously defined below. In this paper
we will study such cylinders and construct a maximal function associated with them.

Consider a vector field uW .S; T / �Rd ! Rd satisfying

u 2 L1loc.S; T I
PW 1;p.Rd //

for some 1 � p � 1, where d � 1 and �1 � S < T � 1 are some finite or infinite
initial and terminal times fixed throughout this article. Fix a spatial function ' 2 C1c .B1/
satisfying

R
' dx D 1, ' � 0, where B1 � Rd is a unit ball of dimension d . Define the

usual mollifier function '" WD "�d'.�="/ 2 C1c .B"/: We denote a universal constant by
C if it depends only on ' and d . Its value may change from line to line. We define the
spatially mollified velocity u"W .S; T / �Rd ! Rd by

u".t; x/ WD Œu.t; �/ � '"�.x/ D

Z
Rd

u.t; x � y/'".y/ dy:

By convolution, we have u" 2 L1loc.S; T IC
1.Rd //. Let us now define the mollified flow

and the skewed cylinders.
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Definition 1 (Mollified flow, skewed cylinders). For some fixed ">0 and .t;x/2 .S;T /�
Rd , define the mollified flow X".t; xI �/ to be the unique solution to the initial value prob-
lem ´

PX".t; xI s/ D u".s; X".t; xI s//;

X".t; xI t / D x;
s 2 .S; T /;

where the dot means taking the derivative in the last argument s. Moreover, if S C "2 <
t < T � "2, define the skewed parabolic1 cylinder with center .t; x/ and radius " by

Q".t; x/ WD
®
.s; y/ W js � t j < "2; jy �X".t; xI s/j < "

¯
:

Heuristically speaking, skewed cylinders defined in Definition 1 are objects appearing
in the Lagrangian formulation but written in Eulerian coordinates. Indeed, they are fol-
lowing the mollified flow and capturing particles that are close to the center trajectories.
Similar to the difficulty of bridging these two formulations, the difficulty of working with
these cylinders comes from the lack of control on the distortion. Without a uniform con-
trol on the velocity field, these skewed cylinders following different flows may include
nonuniform geometric properties. Despite this technical challenge, the maximal function
will provide with us a tool for overcoming this conceptual difficulty. Instead of taking the
average in balls, now we construct a new maximal function that takes the average in the
skewed cylinders that are “admissible”.

Definition 2 (Admissibility, maximal function). Given " > 0, x 2 Rd , t 2 .S C "2; T �
"2/, we define a skewed cylinder Q".t; x/ by Definition 1. For � > 0, we say Q".t; x/ is
�-admissible if

"2
−
Q".t;x/

M.ru.s//.y/ dy ds D
1

"d jQ1j

Z
Q".t;x/

M.ru/ dy ds < �: (2)

Here M is the spatial-only maximal function defined in (1), and with a slight abuse of nota-
tion, we also use jQ1j to represent the .d C 1/-dimensional space-time Lebesgue measure
LdC1 of a cylinder with radius 1. For any locally integrable function f 2 L1loc..S; T / �

Rd /, for every .t; x/ 2 .S; T / �Rd we define a new maximal function MQ by

MQ.f /.t; x/ WD sup
">0

®¬
Q".t;x/

jf .s; y/j dy ds W Q".t; x/ is �-admissible
¯
:

Note that in the sup we actually need "2 < min¹t � S; T � tº to define Q".t; x/, and
we will justify in Section 3 that admissible choices of " exist for almost every .t; x/ so
that MQ is well defined.

The main result of this paper is the following.

1Parabolic scaling – "2 in time versus " in space – will not be indispensable in this paper. We only
employ it because of its applications to the Navier–Stokes equations, but all the results can be generalized
to other time-space scalings.
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Theorem 1. Let � < �0 for some small universal constant �0 > 0. If u is divergence-
free, and M.ru/ 2 Lp..S; T / � Rd / for some 1 � p � 1,2 then MQ associated with
�-admissible cylinders generated by u satisfies the following:

(1) MQ is of strong type .1;1/, i.e. for f 2 L1..S; T / �Rd /, it holds that

kMQf kL1..S;T /�Rd / � kf kL1..S;T /�Rd /:

(2) MQ is of weak type .1; 1/, i.e. for f 2 L1..S; T / � Rd /, � > 0, the Lebesgue
measure of the superlevel set satisfies

LdC1
�®
.t; x/ 2 .S; T / �Rd W .MQf /.t; x/ > �

¯�
�
C1

�
kf kL1..S;T /�Rd /:

(3) MQ is of strong type .q; q/ for any 1 < q <1, i.e. for f 2 Lq..S; T / �Rd /, it
holds that

kMQf kLq..S;T /�Rd / � Cqkf kLq..S;T /�Rd /:

Let us now explain why we are interested in these skewed cylinders and the maxi-
mal function related to them. In many scaling-invariant partial differential equations, it is
a common technique to zoom in near a point and conduct a local analysis in its neigh-
borhood and use this obtained local information to deduce global results. This form of
argument usually consists of two parts: one is a local theorem, which handles the rescaled
problem near a point, and the second is a local-to-global step, which contributes to some
global information. For instance, the three-dimensional Navier–Stokes equations

@tuC u � ruCrP D �u; divu D 0 (3)

are scaling invariant. In particular, u� and P� defined by

u�.t; x/ D �u.�
2t; �x/; P�.t; x/ D �

2P.�2t; �x/

are also solutions to (3). In [3], Caffarelli, Kohn, and Nirenberg investigated the partial
regularity of suitable weak solutions to the Navier–Stokes equations by zooming in to a
so-called parabolic cylinder, where parabolic refers to the fact that the spatial scale is �
while the temporal scale is �2. They showed that if a suitable solution u satisfies

lim sup
r!0

1

r

Z tC 1
8 r
2

t� 78 r
2

Z
Br .x/

jru.s; y/j2 dy ds � �

for some fixed small �, then u is regular at .t; x/. From this local theorem, they used
a covering argument to conclude a global result, that the parabolic measure P1 of the
singular set is zero. This was an improvement from Scheffer’s result ([18]) which stated

2In the case 1 < p � 1, since M is a bounded operator on Lp.Rd /, this condition is equivalent to
ru 2 Lp..S; T / �Rd /.
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the singular set has at most Hausdorff dimension 5
3

. The reason for this improvement is
that

’
jruj2 dx dt has a stronger scaling than other quantities, which is

’
jru�j

2 dx dt D
1
�

’
jruj2 dx dt .

Quantitative global results can also follow from this kind of scaling argument. Choi
and Vasseur ([4, 21]) estimated higher derivatives, by locally controlling higher deriva-
tives using the De Giorgi technique applied to quantities with the same strong scaling
as
’
jruj2. In particular, one must avoid using

’
juj

10
3 , which has a weaker scaling.

However, without controlling the flux, the parabolic regularization cannot overcome the
nonlinearity. A natural idea would be to utilize the Galilean invariance of Navier–Stokes
equations and work in a neighborhood following the flow. Instead of working on parabolic
cylinders, they worked on skewed parabolic cylinders as we defined above.

The advantage of using such skewed cylinders is that, by taking out the mean velocity,
one can use the velocity gradient to control the velocity in the local study. The maximal
function associated with these skewed cylinders then will help us better bridge the local
study to global results.

Let us mention that a similar construction also appears in the recent development of
convex integration for Euler equations by Isett ([11, 12]) and the subsequent work of Isett
and Oh ([13]), where the authors call the mollified flow coarse scale flow and skewed
cylinders u"-adapted Eulerian cylinders. The difference from the previous definition is
that their apertures of mollification, radii of cylinder bases, and lengths of time spans are
chosen differently from here. The purpose is however the same, which is to kill the mean
velocity and to obtain dimensionally correct estimates.

Note that Theorem 1 has already been used in [22, Corollary 1] to show the following
result.

Theorem 2. Let u be a suitable weak solution to the three-dimensional Navier–Stokes
equations (3) with initial data ujtD0 D u0 2 L2.R3/. For any q > 4

3
,K �� .0; T /�R3,

there exists a constant Cq;K depending on q and K such that the following holds,

kr
2uk

L
4
3 ;q.K/

� Cq;K
�
ku0k

3
2

L2.R3/
C 1

�
:

This is an improvement of [7] where the result was shown for Lq with q < 4
3

, and of
[15] where it was shown for L

4
3 ;1.

In this paper we provide the first application of Theorem 1 to give an alternative proof
for the results of Choi and Vasseur in [4], as an example of using the maximal function to
obtain global results from local estimates.

Theorem 3. Let .u;P / be a smooth solution to (3) in .0; T / with initial data u0 2 L2, let
d � 1, ˛ 2 Œ0; 2/, denote f D j.��/

˛
2rduj, p D 4

dC1C˛
. We have

kf 1¹f p>Cd;˛ t�2ºk
p

Lp;1..0;T /�R3/
� Cku0k

2
L2.R3/

:

This paper is organized as follows. Bounds on the maximal function rely on a Vitali-
type covering lemma, which is introduced in Section 2, where we define admissible cylin-
ders and prove the covering lemma for them. We use this covering lemma to show some
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properties of the maximal function in Section 3. Finally, in Section 4 we use the maximal
function to give an alternative proof for the higher-derivative estimates for the Navier–
Stokes equations.

2. Covering lemma

In this section we derive some basic properties of the mollified flows and admissible cylin-
ders, and then use them to prove the covering lemma.

2.1. Preliminaries

We first note the following easy pointwise estimate on the mollified velocity gradient.

Lemma 4 (Pointwise estimate on ru"). For .t; x/ 2 .S; T / �Rd , y 2 Rd , and "; r > 0,
we have

jru".t; x/j � C"
�d
kru.t/kL1.B".x//; (4)

jru".t; x/j � C"
�d
�
jy � xj

"
C 2

�d
kM.ru.t//kL1.B".y//; (5)

jru".t; x/j � C"
�d
�
jy � xj C r C "

r

�d
kM.ru.t//kL1.Br .y//: (6)

Proof. The first estimate follows easily from the scaling that

ru".t; x/ D

Z
Rd

ru.t; x � y/'".y/ dy � kru.t/kL1.B".x//k'"kL1 :

This indicates that by controlling the average of ru in a small ball B".x/, we can con-
trol the size of the mollified gradient at the center x. To control the mollified gradient
from elsewhere, we need a maximal function to gather nonlocal information. For any
x0 2 B".x/, y0 2 Br .y/, we have jy0 � x0j � jy � xj C r C "DWKr , so B".x/� BKr .y0/
and the integral of ru can be bounded byZ

B".x/

jru.t; z/j dz �
Z
BKr .y0/

jru.t; z/j dz D jBKr .y0/j
−
BKr .y0/

jru.t; z/j dz

� Kd jBr jM.ru.t//.y0/:

Since the above holds for any y0 2 Br .y/, by taking the average of the right-hand side in
Br .y/ we have

kru.t/kL1.B".x// � K
d
jBr j

−
Br .y/

M.ru.t//.y0/ dy0

D KdkM.ru.t//kL1.Br .y//: (7)

This bound and estimate (4) yield the third estimate, and the second estimate is a special
case of the third when r D ".
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As can be seen here, M.ru/ controls how mollified velocities alter in space. This
observation motivates us to introduce the notion of admissibility in Definition 2. Let us
provide a heuristic explanation for the choice of homogeneity in (2). Consider two skewed
cylinders, both with radii of order ", starting at the same time with distance also of order ".
If ru is of order "�2�, then their velocities roughly differ by "�1�, so in a time span of
length "2, they at most diverge "� further away, so their distance will remain of order ".
This ensures cylinders do not deviate relatively too far away and will be crucial in the
covering lemma.

Remark 1. For 1 < p <1, (2) is weaker than the Lp analogue

"2
�−

Q".t;x/

M.jrujp/ dy ds
� 1
p

< �:

This is because Jensen’s inequality implies that�−
Q".t;x/

M.ru/ dy ds
�p
�

−
Q".t;x/

ŒM.ru/�p dy ds

and

ŒM.ru/�p.x/ D sup
r>0

�−
Br .x/

jruj dy
�p
� sup
r>0

−
Br .x/

jrujp dy D ŒM.jrujp/�.x/:

Next, let us discuss the trajectories of the mollified flow that passes through an admis-
sible cylinder.

Lemma 5. There exists a universal constant �1 > 0 such that the following is true. Given
" > 0, t0 2 .S C "2; T � "2/, and x0 2 Rd , supposeQ".t0; x0/ is �-admissible as defined
in Definition 2 with � < �1. For any .t�; x�/ 2 Q".t0; x0/, we have

jX".t�; x�I t / �X".t0; x0I t /j � 2" (8)

at any given time t 2 .t0 � "2; t0 C "2/.

Proof. To ease the notation, we denote

X�.t/ WD X".t�; x�I t /; X0.t/ WD X".t0; x0I t /; �X.t/ WD X�.t/ �X0.t/I

thus we need to show j�X.t/j � 2". We argue by contradiction and suppose j�X.s�/j >
2" at some s� 2 .S˛; T ˛/. Without loss of generality, suppose s� > t�. Note that

j�X.t�/j D jX
�.t�/ �X

0.t�/j D jx� �X".t0; x0I t�/j < " < 2"

because .t�; x�/ 2 Q".t0; x0/. Since �X is absolute continuous, there must exist an r� 2
.t�; s�/ such that

j�X.t/j � 2" for any t 2 Œt�; r��; j�X.r�/j D 2": (9)
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For almost every t 2 Œt�; r��, the growth rate of the difference �X can be bounded by

d
dt

ˇ̌̌
�X.t/

ˇ̌̌
�

ˇ̌̌ d
dt
�X.s/

ˇ̌̌
D j PX�.t/ � PX0.t/j

D ju".t; X
�.t// � u".t; X

0.t//j

� jru".t; �t /jj�X.t/j

for some �t between X�.t/ and X0.t/. We can bound the gradient term by

jru".t; �t /j � C"
�d
�
j�t �X

0.t/j

"
C 2

�d
kM.ru.t//kL1.B".X0.t///

� C"�d
�
j�X.t/j

"
C 2

�d
kM.ru.t//kL1.B".X0.t///;

using (5) for x D �t and y D X0.t/. By (9), j�X.t/j � 2" for any t 2 Œt�; r��, so in the
above coefficient C. j�X.t/j

"
C 2/d � C.2C 2/d D C , thus for almost every t 2 Œt�; r��

we have
d
dt
j�X.t/j �

C

"d
kM.ru.t//kL1.B".X0.t///j�X.t/j:

By Grönwall’s inequality, we reach the conclusion that

j�X.r�/j � j�X.t�/j exp
�Z r�

t�

C

"d
kM.ru.t//kL1.B".X0.t/// dt

�
� " exp

�Z t0C"
2

t0�"2

C

"d
kM.ru.t//kL1.B".X0.t/// dt

�
D " exp

� C
"d
kM.ru/kL1.Q".t0;x0//

�
� " exp.C�/;

which contradicts (9) when choosing � < �1 D 1
C

log 2.

To conclude this subsection, we discuss two streamlines with different " that start from
the same location. Before that, we introduce some notation. Let ˛ be an index. Given
"˛ > 0, t˛ 2 .S C "˛2; T � "˛2/, x˛ 2 Rd , we abbreviate

X˛.t/ WD X"˛ .t
˛; x˛I t /; B˛.t/ WD B"˛ .X

˛.t// � Rd ;

S˛ WD t˛ � "˛
2; T ˛ WD t˛ C "˛

2;

Q˛
WD Q"˛ .t

˛; x˛/ D
®
.t; x/ W S˛ < t < T ˛; x 2 B˛.t/

¯
:

(10)

For � > 0, we denote the spatial dilation of a cylinder Q˛ by

�Q˛
WD
®
.t; x/ W S˛ < t < T ˛; x 2 �B˛.t/ D B�"˛ .X

˛.t//
¯
: (11)

Notice that different from upright cylinders or cubes, for "1 < "2, it is not known that
Q"1.t; x/ � Q"2.t; x/, because their center streamlines X"1;2 solve different equations.
As we will see later, this lack of monotonicity only poses a minor technical difficulty. For
the same reason, note that �Q".t; x/ ¤ Q�".t; x/, and neither is necessarily contained in
the other.
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Lemma 6. Recall that �1 is a universal constant defined in Lemma 5. There exists a
universal constant �0 < �1 such that the following is true. Given "˛ > 1

2
"ˇ > 0, t˛ 2 .S C

"˛
2; T � "˛

2/, tˇ 2 .S C "ˇ 2; T � "ˇ 2/, and x˛; xˇ 2 Rd , suppose Q˛ D Q"˛ .t
˛; x˛/,

Qˇ D Q"ˇ .t
ˇ ; xˇ / are �-admissible as defined in Definition 2 with � < �0. For any

.t�; x�/ 2 Q
˛ \Qˇ , we have

jX"ˇ .t�; x�I t / �X"˛ .t�; x�I t /j � "˛ (12)

at any given time t 2 .S˛; T ˛/ \ .Sˇ ; T ˇ /.

Proof. Denote

X1.t/ D X"˛ .t�; x�I t /; X2.t/ D X"ˇ .t�; x�I t /; �X.t/ D X1.t/ �X2.t/I

thus we need to show j�X.t/j � "˛ . Note that

�X.t�/ D X
2.t�/ �X

1.t�/ D X"ˇ .t�; x�I t�/ �X"˛ .t�; x�I t�/ D x� � x� D 0:

Similarly to the last lemma, we argue by contradiction and suppose there exists r� 2
.t�;min¹T ˛; T ˇ º/ such that

j�X.t/j � "˛ for any t 2 Œt�; r��; j�X.r�/j D "˛: (13)

For almost every t 2 Œt�; r��, the time derivative of �X is calculated as

d
dt
�X.t/ D PX2.t/ � PX1.t/

D u"ˇ .t; X
2.t// � u"˛ .s; X

1.t//

D u"ˇ .t; X
2.t// � u"˛ .s; X

2.t//C u"˛ .s; X
2.t// � u"˛ .s; X

1.t//

D

Z "ˇ

"˛

@

@"
u".t; X

2.t// d"C u"˛ .t; X
2.t// � u"˛ .t; X

1.t//: (14)

We will use Qˇ to control the first integral term and use Q˛ to control the rest. Note that

@

@"
u".t; x/ D

@

@"

Z
Rd

u.t; x � "y/'.y/ dy D
Z

Rd

rxu.t; x � "y/ � �y'.y/ dyI

thus we can control its absolute value byˇ̌̌ @
@"
u".t; x/

ˇ̌̌
� "�dkru.t/kL1.B".x//ky'.y/kL1

D C"�dkru.t/kL1.B".x//

� C"�d
�
jx �Xˇ .t/j C "ˇ C "

"ˇ

�d
kM.ru.t//kL1.B"ˇ .X

ˇ .t///

D C"ˇ
�d
�
jx �Xˇ .t/j C "ˇ C "

"

�d
kM.ru.t//kL1.Bˇ .t//: (15)
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Here, to control kru.t/kL1.B".x// we use (7) with r D "ˇ and y D Xˇ .t/ in the last
inequality. Thanks to Lemma 5, jX2.t/ �Xˇ .t/j � 2"ˇ . Since " is between "ˇ and "˛ >
1
2
"ˇ , we have

jX2.t/ �Xˇ .t/j C "ˇ C "

"
�
3"ˇ C "

"
� 7:

Hence, if we set x D X2.t/ in (15), we would getˇ̌̌ @
@"
u".t; X

2.t//
ˇ̌̌
� C"ˇ

�d
kM.ru.t//kL1.Bˇ .t//;

thus we can bound the @" term in (14) byˇ̌̌̌Z "ˇ

"˛

@

@"
u".t; X

2.t// d"
ˇ̌̌̌
� C j"ˇ � "˛j"ˇ

�d
kM.ru.t//kL1.Bˇ .t//

� C"˛"ˇ
�d
kM.ru.t//kL1.Bˇ .t//:

The remaining terms in (14) can be bounded similarly to Lemma 5 as

ju"˛ .t; X
2.t// � u"˛ .t; X

1.t//j � jru"˛ .t; �t /j j�X.t/j

� C"˛
�d
kM.ru.t//kL1.B˛.t//j�X.t/j:

Combining these two bounds in (14), for almost every t 2 Œt�; r��, the growth rate of �X
is bounded by

d
dt
j�X.t/j � C

�
"ˇ
�d
kM.ru.t//kL1.Bˇ .t// C "˛

�d
kM.ru.t//kL1.B˛.t//

�
� ."˛ C j�X.t/j/:

By Grönwall’s inequality, we would reach

"˛ C j�X.r�/j � ."˛ C j�X.t�/j/ exp
�
C

Z r�

t�

"ˇ
�d
kM.ru.t//kL1.Bˇ .t//

C "˛
�d
kM.ru.t//kL1.B˛.t// dt

�
� "˛ exp.2C�/; (16)

which contradicts (13) when choosing � < �0 D min¹�1; 1
2C

log 2º.

2.2. Covering lemma for admissible cylinders

The goal of this section is to prove a Vitali-type covering lemma for �-admissible cylin-
ders, provided � < �0. The key ingredient is Proposition 7, which shows that if two
cylinders intersect, then during their shared life span, they are uniformly close to each
other. Based on this proposition, we conclude in Lemma 8 that for an �-admissible cylin-
der Q˛ , the union of all �-admissible cylinders with comparable or lower radius that
intersectQ˛ has a comparable total measure asQ˛ . The covering lemma will be a conse-
quence of Lemma 8.

Throughout this subsection, we employ the notation introduced in (10).
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Proposition 7. For any pair of intersecting �-admissible cylinders Q˛ , Qˇ as in (10)
with "ˇ < 2"˛ and � < �0 chosen in Lemma 6, at any t 2 .S˛; T ˛/ \ .Sˇ ; T ˇ /, we have
Bˇ .t/ � 9B˛.t/.

That is, ifQ˛ intersectsQˇ with "ˇ < 2"˛ , thenQˇ \ ¹S˛ < t < T ˛º � 9Q˛ . Recall
that �Q˛ is the spatial dilation defined in (11). The proof is based on Lemmas 5 and 6
which control the trajectories at the level of Q". See Figure 1 for our strategy.

.S˛; T ˛/

.Sˇ ; T ˇ /

Q˛

Qˇ

.t˛ ; x˛/

.tˇ ; xˇ /

.t� ; x�/

X˛.t/

X"˛ .t�; x�I t /

X"ˇ .t�; x�I t /

Xˇ .t/

Figure 1. Q˛ and Qˇ intersect.

Proof of Proposition 7. Let �0 be chosen as in Lemma 6. Fix some .t�; x�/ 2 Q˛ \Qˇ .
For any .t; x/ 2 Qˇ with S˛ < t < T ˛ , we apply the triangle inequality to estimate

jx �X˛.t/j � jx �Xˇ .t/j

C jXˇ .t/ �X"ˇ .t�; x�I t /j

C jX"ˇ .t�; x�I t / �X"˛ .t�; x�I t /j

C jX"˛ .t�; x�I t / �X
˛.t/j

� "ˇ C 2"ˇ C "˛ C 2"˛:

Here, the first term is because x 2 Bˇ .t/, the second and the fourth are due to Lemma 5,
and the third term is controlled by Lemma 6. Since "ˇ < 2"˛ , we have

jx �X˛.t/j < 9"˛:

We remark here that if we take a sharper estimate in each step of Lemmas 5 and 6
(and require a smaller �), the factor 9 can be easily improved to 5 C ı for any ı > 0.
The factor 5 is also the one that appeared in the original Vitali covering lemma for balls.
Recall that in the proof of the Vitali lemma, an important reason why we get a comparable
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volume is because if two balls Br1.x1/ \ Br2.x2/ ¤ ¿ with r2 < 2r1, then Br2.x2/ �
5Br1.x1/. Unfortunately, this geometric property cannot be realized in our case, because
an admissible cylinder with (2) has no control over the past and future velocities. As a
consequence, it is unlikely to cover Qˇ by dilation of Q˛ in space-time. However, this
requirement can be relaxed as the following. See [20, Section 1.1] for a more general
setting.

Lemma 8. Given a fixed Q˛ and a family of ¹Qˇ ºˇ�ƒ as in (10) such that for each Qˇ ,
Q˛ \Qˇ ¤ ¿, "ˇ < 2"˛ , and they are �-admissible for � < �0. Let Q˛

� D
S
ˇ2ƒQ

ˇ

denote the union of this family. Then there exists a universal constant C such that

jQ˛
� j � C jQ

˛
j:

Proof. Without loss of generality, we may assume that ¹Qˇ ºˇ�ƒ is a finite collection.
The general case can be proven using the finite case. Note that each Qˇ is an open set.
For any compact subsetK ��Q˛

� ,K admits a finite open cover, thus jKj � C jQ˛j using
the finite case. Since the inequality holds for any compact subset K, it must also be true
for Q˛

� .
For each Qˇ , we can break it into Qˇ D Q

ˇ
C [Q

ˇ
� [Q

ˇ
ı , where

Q
ˇ
C D Q

ˇ
\ ¹t � T ˛º;

Qˇ
� D Q

ˇ
\ ¹t � S˛º;

Qˇ
ı D Q

ˇ
\ ¹S˛ < t < T ˛º:

From Proposition 7, we can conclude that[
ˇ2ƒ

Qˇ
ı � 9Q

˛
)

ˇ̌̌̌ [
ˇ2ƒ

Qˇ
ı

ˇ̌̌̌
� 9d jQ˛

j: (17)

As mentioned in the remark, we cannot bound the size of
S
ˇ2ƒQ

ˇ
C or

S
ˇ2ƒQ

ˇ
� directly

by Q˛ , as their center streamlines can diverge away from X˛ after T ˛ . Fortunately, we
do not need them to be close to X˛ , as long as we can show they remain a small distance
from each other.

Let us measure
S
ˇ2ƒQ

ˇ
C. First, we group the cylinders by their radii. Denote

ƒi D
®
ˇ 2 ƒ W 2�i"˛ � "ˇ < 2

�iC1"˛
¯
: (18)

Because each "ˇ < 2"˛ , we have ƒ D
S
i2N ƒi , hence we can write the union as[

ˇ2ƒ

Q
ˇ
C D

[
i2N

[
ˇ2ƒi

Q
ˇ
C: (19)

Now we fix i and estimate the size of
S
ˇ2ƒi

Q
ˇ
C. Clearly we can disregard the empty

ones, and assume T ˛ < T ˇ for each ˇ 2 ƒi . To begin with, set Q
.0/
i D ¹Q

ˇ
Cºˇ2ƒi . Then

we repeat the following two steps: at the j th iteration (j � 1),
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(Step 1) select some ǰ such that T ǰ D max¹T ˇ W Qˇ
C 2 Q

.j�1/
i º;

(Step 2) from Q
.j�1/
i we remove any Qˇ

C such that Bˇ .T ˛/ \ B ǰ .T ˛/ ¤ ¿, and
denote the rest by Q

.j /
i .

After finitely many iterations, Q
.nC1/
i will be empty, and we have a list of Qˇ1

C ; : : : ;Q
ˇn
C .

We claim that [
ˇ2ƒi

Q
ˇ
C �

n[
jD1

9Q
ǰ

C : (20)

To see why this is true, take any Qˇ
C 2 Q

.0/
i . It must have been removed from Q

.j�1/
i at

some step j in the above process. This implies Bˇ .T ˛/\B ǰ .T ˛/¤ ¿, and T ˇ � T ǰ .
Also, we have "ˇ < 2" ǰ

, which is actually true for any pair of cylinders by our selection
of ƒi according to (18). Therefore, by Proposition 7 we have Bˇ .t/ � 9B ǰ .t/ at any
t 2 .Sˇ ; T ˇ / \ .S ǰ ; T ǰ /. Because Sˇ ; S ǰ � T ˛ � T ˇ � T ǰ , we have Qˇ

C � 9Q
ǰ

C

and this proves claim (20).
Note that by our construction, ¹B ǰ .T ˛/ºnjD1 are pairwise disjoint, and they are all

inside 9B˛.T ˛/ by Proposition 7. Therefore their total measure is
nX

jD1

jQ
ǰ

C j �

nX
jD1

jB ǰ .T ˛/j � 2."
ǰ
/2

�

nX
jD1

2 � jB ǰ .T ˛/j � .2�iC1"˛/
2

D 2 � 4�iC1"˛
2

ˇ̌̌̌ n[
jD1

B ǰ .T ˛/

ˇ̌̌̌
� 2 � 4�iC1"˛

2
j9B˛.T ˛/j D 4�iC1 � 9d jQ˛

j:

Combining with claim (20), we haveˇ̌̌̌ [
ˇ2ƒi

Q
ˇ
C

ˇ̌̌̌
�

ˇ̌̌̌ n[
jD1

9Q
ǰ

C

ˇ̌̌̌
� 9d

nX
jD1

jQ
ǰ

C j � 4
�iC1

� 92d jQ˛
j:

Finally, take the summation over i , and (19) yieldsˇ̌̌̌ [
ˇ2ƒ

Q
ˇ
C

ˇ̌̌̌
�

1X
iD0

ˇ̌̌̌ [
ˇ2ƒi

Q
ˇ
C

ˇ̌̌̌
�

1X
iD0

4�iC1 � 92d jQ˛
j D

16

3
� 92d jQ˛

j:

The same proof also applies to
S
ˇ2ƒQ

ˇ
�. Therefore, together with estimate (17), we have

proven that

jQ˛
� j D

ˇ̌̌̌ [
ˇ2ƒ

Qˇ

ˇ̌̌̌
�

ˇ̌̌̌ [
ˇ2ƒ

Q
ˇ
C

ˇ̌̌̌
C

ˇ̌̌̌ [
ˇ2ƒ

Qˇ
�

ˇ̌̌̌
C

ˇ̌̌̌ [
ˇ2ƒ

Qˇ
ı

ˇ̌̌̌
�
16

3
� 92d jQ˛

j C
16

3
� 92d jQ˛

j C 9d jQ˛
j D C jQ˛

j:
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We are finally ready to show the Vitali-type covering lemma.

Proposition 9 (Covering lemma). Let A be an index set and let

Q D
®
Q˛
D Q"˛ .t

˛; x˛/ W ˛ 2 A
¯

be a collection of �-admissible cylinders, where � < �0 is defined in Lemma 6 and "˛ are
uniformly bounded. Then there is a pairwise disjoint subcollection P D ¹Q˛1 ; Q˛2 ; : : : ;

Q˛n ; : : : º (finite or infinite) such thatX
j

jQ j̨ j �
1

C

ˇ̌̌̌[
˛2A

Q˛

ˇ̌̌̌
;

where C is a universal constant.

Proof. With the help of the previous lemma, the proof of the covering lemma is the same
as the classical one in [19]. We select the subcollection P by the following procedure. To
begin with, set Q.0/ DQ. Then repeat the following two steps: at the j th iteration (j � 1),

(Step 1) select some j̨ such that "
j̨
> 1

2
supQ˛2Q.j�1/¹"˛º;

(Step 2) from Q.j�1/ we remove anyQ˛ that intersects withQ j̨ , and denote the rest
by Q.j /.

This procedure may stop after a certain step if Q.nC1/ D¿, or it can continue indefinitely.
We denote the chosen ones by P WD ¹Q˛1 ; : : : ; Q˛n ; : : : º (finite or infinite). They are
pairwise disjoint due to our strategy.

Suppose that
P
j jQ

j̨ j < 1; otherwise the conclusion is automatically true. Thus
either P is a finite collection, or P is infinite and "

j̨
! 0 as j !1. In either case, each

Q˛ must be removed from Q.j / at some iteration. Otherwise, we would haveQ˛ 2Q.j�1/

for all j , then Step 1 would imply that "
j̨
> 1

2
"˛ for all j , thus the sequence "

j̨
cannot

converge to zero. Now suppose Q˛ 2 Q.j�1/ nQ.j /; then we have Q˛ \Q j̨ ¤ ¿, and
"˛ < 2" j̨

. This implies

Q˛
� Q

j̨
� WD

[
˛2A

®
Q˛
2 Q W "˛ < 2" j̨

; Q˛
\Q j̨ ¤ ¿

¯
:

Thus
S
˛2AQ

˛ �
Sn
jD1Q

j̨
� , and finally we control the measure of the union byˇ̌̌̌[

˛2A

Q˛

ˇ̌̌̌
�

ˇ̌̌̌ n[
jD1

Q
j̨
�

ˇ̌̌̌
�

nX
jD1

jQ
j̨
� j � C

nX
jD1

jQ j̨ j;

thanks to Lemma 8.

3. Construction of the maximal function

In this section we use the covering lemma to generalize some results from classical har-
monic analysis to our situation. First, we confirm the existence of �-admissible cylinders
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centering almost everywhere under some assumptions on u. Then we prove the main the-
orem for the maximal function on these skewed cylinders and show related results similar
to the classical case.

3.1. Existence of admissible cylinders

To begin with, we need some assumptions to guarantee the existence of �-admissible
cylinders centering almost everywhere, which are the following. For the entire Section 3
we make the following assumptions.

Assumption 10. For some 1 � p � 1,

(1) M.ru/ 2 Lp..S; T / �Rd /;

(2) divu D 0.

Proposition 11. Let �> 0. For almost every .t;x/2 .S;T /�Rd ,Q".t;x/ is �-admissible
for sufficiently small " (depending on .t; x/). Moreover, we have

lim
"!0

diam.Q".t; x// D 0;

where diam refers to the .d C 1/-dimensional diameter.

Before showing the proof of Proposition 11, we first give a general lemma on the
L1 boundedness of the map f 7! f" defined below. Given f 2 L1loc..S; T / � Rd /, for
x 2 Rd , t 2 .S; T /, " > 0, we define

f".t; x/ D

8̂<̂
:
−
Q".t;x/

f .s; y/ dy ds; t 2 .S C "2; T � "2/;

0; t 2 .S; S C "2� [ ŒT � "2; T /:

(21)

Then we have the following bound on f".

Lemma 12 (L1 boundedness). Given f 2 L1..S; T / �Rd / we have

kf"kL1..S;T /�Rd / � kf kL1..S;T /�Rd /:

Proof. A direct computation givesZ T�"2

SC"2

Z
Rd

jf".t; x/j dx dt

D

Z T�"2

SC"2

Z
Rd

1

jQ"j

ˇ̌̌̌Z
Q".t;x/

f .s; y/ dy ds
ˇ̌̌̌
dx dt

�
1

jQ"j

Z T

S

Z
Rd

Z T�"2

SC"2

Z
Rd

jf .s; y/j1¹.s;y/2Q".t;x/º dx dt dy ds

D
1

jQ"j

Z T

S

Z
Rd

jf .s; y/jLdC1. zQ".s; y// dy ds; (22)
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where we define, for any fixed .s; y/ 2 .S;T /�Rd , the dual Lagrangian cylinder by (see
[13] for a detailed discussion of these cylinders)

zQ".s; y/ WD
®
.t; x/ 2 .S C "2; T � "2/ �Rd W .s; y/ 2 Q".t; x/

¯
:

Then from the definition of Q".t; x/, we can see that

zQ".s; y/ �
®
.t; x/ W jt � sj < "2; jX".t; xI s/ � yj < "

¯
D
®
.t; x/ W jt � sj < "2; x0 WD X".t; xI s/ 2 B".y/

¯
D
®
.t; x/ W jt � sj < "2; x0 2 B".y/; x D X".s; x

0
I t /
¯
:

Because u" is also divergence-free, the measure of a set is invariant under the flow, so we
have

Ld
�®
X".s; x

0
I t / W x0 2 B".y/

¯�
D Ld .B".y//:

Thus the measure of the dual cylinder is

LdC1. zQ".s; y// � LdC1
�®
.t; x/ W jt � sj < "2; x0 2 B".y/; x D X".s; x

0
I t /
¯�

D

Z min.T;sC"2/

max.S;s�"2/
Ld
�®
X".s; x

0
I t / W x0 2 B".y/

¯�
dt

� 2"2jB"j D jQ"j:

Plugging into (22), we conclude thatZ T�"2

SC"2

Z
Rd

jf".t; x/j dx dt �
1

jQ"j

Z T

S

Z
Rd

jf .s; y/jLdC1. zQ".s; y// dy ds

�

Z T

S

Z
Rd

jf .t; x/j dx dt:

Proof of Proposition 11. If p D 1 in Assumption 10, the conclusions follow naturally
from Definitions 1 and 2, as now both the velocity field and its gradient are locally
bounded. We shall only focus on the case p <1 from now.

Without loss of generality, assume � � �0. For S < t < T , x 2 Rd , define

F.t; x/ WD ŒM.ru.t//.x/�p 2 L1..S; T / �Rd /;

and F".t; x/ is defined the same as in (21). Lemma 12 shows that kF"kL1 � kF kL1 . We
want to show that for sufficiently small ",

F".t; x/ � �
p"�2p:

By Remark 1, this implies that Q".t; x/ is �-admissible. Define the set of nonadmissible
points by

�" D
®
.t; x/ 2 .S C "2; T � "2/ �Rd W F".t; x/ > �

p"�2p
¯
:
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By Chebyshev’s inequality, its measure is bounded by

j�"j �
ˇ̌®
F" > �

p"�2p
¯ˇ̌
�
kF"kL1

�p"�2p
�
kF kL1

�p
"2p ! 0

as "! 0. Therefore, j
T
">0�"j D 0, that is, the set of points at which no �-admissible

cylinder centers has measure zero. In other words, for almost every point .t; x/, there
exists " > 0 such that Q".t; x/ is �-admissible.

This is not enough to show the conclusion, because �" may not be monotone in ". To
see that Q".t; x/ is �-admissible for all sufficiently small ", let us define

�0" D
®
.t; x/ 2 .S C "2; T � "2/ �Rd W F".t; x/ > �

p.2dC1"/�2p
¯
:

Similarly to before, Chebyshev’s inequality implies

j�0"j �
kF kL1

�p
.2dC1"/2p:

In particular, for each i � 1, we have a geometric decaying upper bound as

j�0
2�i
j �
kF kL1

�p
.2dC12�i /2p:

It is a summable geometric series in i ; thus by the Borel–Cantelli lemma we haveˇ̌̌
lim sup
i!1

�0
2�i

ˇ̌̌
D

ˇ̌̌̌\
I>0

[
i>I

�0
2�i

ˇ̌̌̌
D 0:

That is, for almost every .t; x/ 2 .S; T / �Rd , there exists I > 0 such that for all i > I ,
.t; x/ … �0

2�i
, i.e. for "i D 2�i we have

F"i .t; x/ D

−
Q"i .t;x/

F.s; y/ dy ds � �p.2dC1"i /�2p:

By Remark 1, Jensen’s inequality implies

"2i

−
Q"i .t;x/

M.ru/ dy ds � "2i

�−
Q"i .t;x/

ŒM.ru/�p dy ds
� 1
p

�
�

4dC1
:

That is, Q"i .t; x/ is .4�d�1�/-admissible.
We claim that if Q"˛ .t0; x0/ is .4�d�1�/-admissible, then for every "ˇ within "˛

4
�

"ˇ �
"˛
2

, Q"ˇ .t0; x0/ �
3
4
Q"˛ .t0; x0/. This can be proven by the claim

jX"ˇ .t0; x0I t / �X"˛ .t0; x0I t /j �
"˛

4
for all t 2 .t0 � "ˇ 2; t0 C "ˇ 2/; (23)

whose proof is a slight modification of Lemma 6. Define Q˛ D Q"˛ .t0; x0/ and Qˇ D

Q"ˇ .t0; x0/. If we proceed with the proof of Lemma 6, without knowing that Qˇ is �-
admissible, the only difficulty will arise at the last step (16), when we want to bound the
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integral of "ˇ�dkM.ru.t//kL1.Bˇ .t// in Grönwall’s inequality. However, as long as (23)
holds at time t , Bˇ .t/ is contained in B˛.t/, thus

"ˇ
�d
kM.ru.t//kL1.Bˇ .t// � 4

d"˛
�d
kM.ru.t//kL1.B˛.t//

while the integral of the latter is bounded by 4d�. Following the same continuity argument,
we conclude (23) in the end.

By this claim, for every " between "i
4

and "i
2

, we have

Q".t; x/ �
3

4
Q"i .t; x/ �

�3
4

�2
Q"i�1.t; x/ � � � �

which implies diam.Q".t; x// ! 0 as " ! 0. Although we do not have monotonicity
for Q".t; x/ in ", we have this “monotonicity with gaps”. Moreover, since Q".t; x/ �
Q"i .t; x/, " >

"i
4

, we can bound F" by

F".t; x/ D
1

jQ"j

Z
Q".t;x/

F dy ds �
jQ"i j

jQ"j

−
Q"i .t;x/

F dy ds � 4dC1�p.2dC1"i /�2p

� �p"
�2p
i � �p"�2p:

Thus .t; x/ … �" for every " 2 Œ "i
4
; "i
2
� and for every i > I , that is, for every " � 2�I�1.

This means Q".t; x/ is admissible for all " sufficiently small.

Following this existence proposition, we furthermore have the following corollary on
the L1 convergence.

Corollary 13 (L1 convergence). Let f 2 L1..S; T / �Rd /, and define f" by (21); then

f" ! f in L1..S; T / �Rd / as "! 0:

Proof. For any ı > 0, we can find g 2C1c ..S;T /�Rd / such that kf � gkL1 <
ı
3

. Denote
h D f � g; then khkL1 <

ı
3

and, by Lemma 12, kh"kL1 <
ı
3

also (we define h" in the
same way as (21)). Since g is uniformly continuous, it is clear that as diam.Q".t; x//! 0,

kg � g"kL1 �

Z
.SC"2;T�"2/�Rd

−
Q".t;x/

jg.t; x/ � g.s; y/j dy ds dx dt <
ı

3

for sufficiently small " such that g.t; �/ D 0 in .S; S C "2/ [ .T � "2; T /. Thus

kf � f"kL1 D kg C h � g" � h"kL1 � kg � g"kL1 C khkL1 C kh"kL1 < ı

provided " is small enough.

3.2. Maximal function

The existence Proposition 11 ensures the maximal function is well defined almost every-
where. With the help of the covering lemma, we can prove the bounds for the maximal
function. A lot of ideas are borrowed from [19]. We do not claim any originality for results
in this section but only put them here for the sake of completeness.
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Proof of Theorem 1. By the existence Proposition 11, for almost every .t; x/ 2 .S; T / �
Rd , the set ¹">0 WQ".t;x/ is �-admissibleº is nonempty, so the maximal function MQ.f /

is well defined almost everywhere.

(1) This is evident from the definition, since for any .t; x/ it holds that−
Q".t;x/

jf .s; y/j dy ds � kf kL1 :

(2) For any � > 0, let E� D ¹.t; x/ W .MQf /.t; x/ > �º be the superlevel set. Then by
definition, there is an �-admissible Q" centered at each point .t; x/ 2 E�, such that

jQ"j <
1

�

Z
Q".t;x/

jf .s; y/j dy ds:

Their radii are thus uniformly bounded. Thanks to the covering lemma Proposition 9, we
can choose a pairwise disjoint subcollection ¹Q"j .t

j ; xj /º, such thatX
j

jQ"j j �
1

C

ˇ̌̌̌ [
.t;x/2E�

Q".t; x/

ˇ̌̌̌
:

Therefore the measure of the superlevel set can be bounded by

jE�j � C
X
j

jQ"j j �
C

�

X
j

Z
Q"j .t

j ;xj /

jf j dx dt �
C

�

Z
.S;T /�Rd

jf j dx dt:

(3) For the type .q; q/ part, we use Marcinkiewicz interpolation. Note that MQ is sub-
additive: MQ.f C g/ � MQ.f / CMQ.g/. We can split f D f1 C f2 where f1 D
f�
jf j� �2

and f2 D f�jf j> �
2

. First, the strong type .1;1/ estimate applied to f1 yields

kMQ.f1/kL1 �
�

2
:

Thus we have

MQ.f / �MQ.f1/CMQ.f2/ �
�

2
CMQ.f2/:

So MQ.f / > � implies MQ.f2/ >
�
2

. Next, the weak type .1; 1/ estimate applied to f2
yields

�.E�/ � �
�®

MQ.f2/ >
�
2

¯�
�
2C

�
kf2kL1 :

By the layer cake representation, we haveZ
.S;T /�Rd

ŒMQ.f /�
q dt dx D q

Z 1
0

�.E�/�
q�1 d�

� 2Cq

Z 1
0

1

�

Z
.S;T /�Rd

jf j�
jf j> �

2
�q�1 dx dt d�
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D 2Cq

Z
.S;T /�Rd

jf j

Z 2jf j

0

�q�2 d� dx dt

D
2Cq � 2q�1

q � 1

Z
.S;T /�Rd

jf jq dx dt D Cqkf k
q
Lq :

This finishes the proof of the theorem.

This theorem together with the L1 convergence will imply the almost everywhere
convergence of f".

Corollary 14 (a.e. convergence). Given f 2 L1loc..S; T /�Rd /, for almost every .t; x/ 2
.S; T / �Rd , we have f".t; x/! f .t; x/ as "! 0, where f" is defined in (21).

Proof. According to Proposition 11, diam.Q".t; x//! 0 for almost every .t; x/, so we
can assume f is compactly supported and thus integrable without loss of generality. By
Corollary 13 (L1 convergence) we can find a subsequence which converges to f almost
everywhere, hence it suffices to show the following oscillation function is zero almost
everywhere: for f 2 L1loc..S; T / �Rd /, define the oscillation function by

�f .t; x/ D lim sup
"!0

f".t; x/ � lim inf
"!0

f".t; x/:

For a uniformly continuous function g, we have �g � 0 almost everywhere, again using
the fact that diam.Q".t; x// ! 0 by Proposition 11. Moreover, notice that as " ! 0,
Q".t; x/ is �-admissible, so we have

lim sup
"!0

f".t; x/ � lim sup
"!0

jf".t; x/j �MQ.f /.t; x/;

� lim inf
"!0

f".t; x/ � lim sup
"!0

jf".t; x/j �MQ.f /.t; x/;

so �f � 2MQ.f / almost everywhere. Now we fix � > 0. For any given ı > 0, we split
f D g C h with g 2 C1c ..S; T / �Rd / and khkL1 < ı; we have

�f � �hC�g D �h � 2MQ.h/:

By Theorem 1, the weak type .1; 1/ estimate gives

�
�®
�f > �

¯�
� �

�®
MQ.h/ >

�
2

¯�
�
2C

�
khkL1 D

2C

�
ı:

Set ı ! 0; we obtain
�
�®
�f > �

¯�
D 0:

This is true for any � > 0; therefore we actually have

�
�®
�f > 0

¯�
D 0:

This means, for almost every .t; x/ 2 .S; T / �Rd , the oscillation is zero and

lim sup
"!0

f".t; x/ D lim inf
"!0

f".t; x/ D lim
"!0

f".t; x/ D f .t; x/:
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Using the definition of MQ, it is easy to deduce the following.

Corollary 15. For f 2 L1loc..S; T / �Rd /, f �MQ.f / almost everywhere.

To conclude this section, we present a slightly stronger result than the almost every-
where convergence.

Theorem 16 (Q-Lebesgue differentiation theorem). Under the same assumption as
Corollary 14, for almost every .t; x/ 2 .S; T / �Rd , we have

lim
"!0

−
Q".t;x/

jf .s; y/ � f .t; x/j dy ds D 0: (24)

If (24) is true for .t; x/, we call it a Q-Lebesgue point of f , and define the Q-Lebesgue
set of f to be the set of all Q-Lebesgue points of f .

Proof of Theorem 16. Consider any rational number q 2 Q. Then f � q 2 L1loc; thus by
Corollary 14 we have

jf � qj".t; x/ D

−
Q".t;x/

jf � qj.s; y/ dy ds ! jf � qj.t; x/ a.e. as "! 0:

By taking a countable intersection over q 2 Q of all the sets where the convergence
jf � qj" ! jf � qj happens, we have

jf � qj".t; x/! jf � qj.t; x/ a.e. as "! 0 for all q 2 Q:

By the density of rational numbers, it holds that

jf � r j".t; x/! jf � r j.t; x/ a.e. as "! 0 for all r 2 R:

In particular, letting r D f .t; x/ gives

jf � f .t; x/j".t; x/! jf .t; x/ � f .t; x/j D 0 a.e. as "! 0:

This is equivalent to (24).

4. Application to the Navier–Stokes equations

In this section we give an example of how to use the maximal function to bridge between
the local study and global results. Here we provide an alternative proof for Lp-weak
integrability for higher derivatives of three-dimensional Navier–Stokes equations. In [4,
Proposition 2.2] (case r D 0), the authors obtained the following local theorem. Recall
that Br represents a ball of radius r in R3.

Proposition 17 ([4]). Let ' 2 C1c .B1/ be radial, satisfying 0 � ' � 1,
R
' dx D 1, and

' � 1 on B 1
2
. There exists N� > 0, such that if v; p 2 C1..�4; 0/ �R3/ is a solution to

@tv C .v � r/v Crp D �v; div v D 0
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verifying both Z
R3

'.x/v.t; x/ dx D 0 for almost every t 2 .�4; 0/;Z 0

�4

Z
B2

�ˇ̌
M.jM.rv/jq/

ˇ̌ 2
q C jr

2pj C

dC4X
mDd

sup
ı>0

j.rm�1h˛/ı � r
2pj

�
dx dt � N�

for some integer d � 1, ˛ 2 Œ0; 2/, q D 12
˛C6

, and .rmh˛/ı is defined by

h˛.x/ WD
'.x

2
/ � '.x/

jxj3C˛
; .rmh˛/ı.x/ WD

1

ı3
.rmh˛/

�x
ı

�
;

then
j.��/

˛
2r

dvj � Cd;˛ in .�1=36; 0/ � B 1
6
.0/:

This local theorem aims to control the magnitude of the higher fractional derivatives
using quantities involving rv and r2p. Indeed,

’
jrvj2 dx dt and

’
jr2pj dx dt both

have the best scaling of the equation, and it is not hard to see the integrand in Proposi-
tion 17 has the same scaling. The average zero condition ensures that the velocity v is
small as well, so that the quadratic flux term v � rv is manageable in the parabolic reg-
ularization. Moreover, since the purpose is to control a nonlocal quantity .��/

˛
2rdv,

we need to gather nonlocal information using the maximal function M and the rmh˛-
maximal function: supı>0 j.r

mh˛/ı � �j.
Let u be a smooth solution to the Navier–Stokes equations (3) in .0;T /. Since we need

to center the cylinders at the terminal time for the local study, let us change our notation,
and redefine

Q".t; x/ WD
®
.s; y/ W t � "2 < s < t; jy �X".t; xI s/j < "

¯
based on the velocity field u, which has L2 gradient and divergence zero. Results for
the covering lemma and the maximal function can all be applied to this family of skewed
cylinders, as we are just recentering. By Galilean transform, the previous local proposition
implies the following in the global coordinates.

Corollary 18. There exists N� > 0, such that if u; P 2 C1..0; T / � R3/ is a solution to
(3) verifying for some .t; x/ 2 .0; T / �R3, " < 1

2

p
t ,

1

"

Z
Q2".t;x/

�ˇ̌
M.jM.ru/jq/

ˇ̌ 2
q C jr

2P j C

dC4X
mDd

sup
ı>0

j.rm�1h˛/ı � r
2P j

�
dx dt � N�;

then
j.��/

˛
2r

duj.t; x/ �
Cd;˛

"dC˛C1
:

Proof. For a fixed .t; x/, denote r.s/ D t C "2s and z.s/ D X".t; xI r/; then

Pr D "2; Pz D "2u".r; z/:
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We define the following change of coordinates:

v.s; y/ D "u.r; z C "y/ � "u".r; z/;

p.s; y/ D "2P.r; z C "y/C "y@sŒu".r; z/�:

Then we have the following in the new variables:

@sv D " Pr@tuC " Pz � ru � " Pr@tu" � " Pz � ru"

D "3.@tuC u" � ru � @tu" � u" � ru"/;

v � ryv D v � "
2
ru D "3.u � ru � u" � ru/;

�yv D "
3�u:

Combining these three, we obtain

@sv C v � rv ��v D "
3.@tuC u � ru ��u � .@t C u" � r/u"/

D �"3.rP C .@t C u" � r/u"/:

Moreover, since @su".r; z/ D Pru" C Pz � ru" D "2.@t C u" � r/u", we have

ryp D "
2"rP C "@s.u".r; z// D "

3.rP C .@t C u" � r/u"/:

Therefore, .v; p/ is also a solution to the Navier–Stokes equations. Now we check that v,
p satisfy the assumptions of Proposition 17. First, since t 2 .4"2; T /, we know that .v; p/
is a smooth solution for s 2 .�4; 0/. Next we can verify thatZ

R3

'.y/v.s; y/ dy D "
�Z

R3

'.y/u.r; z C "y/ dy � u".r; z/
�
D 0:

For the last condition, the change of variable yieldsˇ̌
M.jM.rv/jq/

ˇ̌ 2
q D "4

ˇ̌
M.jM.ru/jq/

ˇ̌ 2
q ;

r
2p D "2 � "2r2P C 0 D "4r2P;

.rm�1h˛/ı � r
2p D "4.rm�1h˛/"ı � r

2P:

Since Q2".t; x/ D ¹.r; z C "y/ W .s; y/ 2 .�4; 0/ � B2º has space-time dimension 5, the
last condition of Proposition 17 is verified. As a consequence, we can bound

j.��/
˛
2r

dv.s; y/j � Cd;˛ in .�1=36; 0/ � B 1
6
.0/:

In particular, when s D 0, y D 0, we have

Cd;˛ � j.��/
˛
2r

dv.0; 0/j D "dC˛C1j.��/
˛
2r

du.t; x/j:

Based on this, let us prove Theorem 3 using the maximal function MQ.



J. Yang 816

Proof of Theorem 3. Define

F.t; x/ D
ˇ̌
M.jM.ru/jq/

ˇ̌ 2
q .t; x/C jr2P j C

dC4X
mDd

sup
ı>0

j.rm�1h˛/ı � r
2P j.t; x/:

It is well known that for the Navier–Stokes equations, smooth solutions satisfy the follow-
ing energy inequality:

kruk2
L2..0;T /�R3/

�
1

2
ku0k

2
L2.R3/

:

By the boundedness of the spatial maximal function in L2.R3/ and in L
2
q .R3/, we have

ˇ̌M.jM.ru/jq/

ˇ̌ 2
q



L1
� kruk2

L2
:

Moreover, using ��P D div.u � ru/ D rui � @xiu, by the compensated compactness
([6]), we bound

kr
2P kL1.0;T IH1.R3// � kruk

2
L2..0;T /�R3/

where H1 is the Hardy space. It is continuously embedded in L1, and we can use the
Hardy norm to bound the rmh˛-maximal function by


sup

ı>0

j.rm�1h˛/ı � r
2P.t/j





L1.R3/

� Cm;˛kr
2P.t/kH1.R3/:

Combining the above estimates, we conclude that

kF kL1..0;T /�R3/ � Cku0k
2
L2.R3/

: (25)

Denote � WD min¹ N�
jQ1j

; .�0/
2º, and for .t; x/ 2 .0; T / �R3 we define

I."/ WD "4
−
Q".t;x/

F.s; y/ dy ds D
1

"jQ1j

Z
Q".t;x/

F.s; y/ dy ds:

For all the Q-Lebesgue points .t; x/ of F , we claim that there exists a positive " D ".t;x/
such that one of the following two cases is true:

Case 1. ".t;x/ < t
1
2 and I.".t;x// D �.

Case 2. ".t;x/ D t
1
2 and I.".t;x// � �.

The reason is that lim"!0 I."/D 0
4F.t; x/D 0, and I."/ is clearly a continuous function

of " when " > 0. As " ranges from 0 to t
1
2 , either I."/ reaches � at some ".t;x/ < t

1
2

(Case 1), or it remains smaller than � until ".t;x/ D t
1
2 (Case 2).

At this " D ".t;x/ level, because

jM.ru/j2 �
ˇ̌
M.jM.ru//jq/

ˇ̌ 2
q � F;

by Jensen we have

"4
�−

Q".t;x/

jM.ru/j dy ds
�2
� "4

−
Q".t;x/

jM.ru/j2 dy ds � I."/ � �;
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which implies Q".t; x/ is actually
p
�-admissible. So when in Case 1,

� D "4
−
Q".t;x/

F.s; y/ dy ds � "4MQF.t; x/:

Combining with Case 2, we conclude

"�4.t;x/ � max
®
t�2;

MQF.t;x/
�

¯
:

Moreover, because jQ1j � I.".t;x// � N� in both cases, Corollary 18 claims that

j.��/
˛
2r

duj.t; x/ �
Cd;˛

"dC˛C1
.t;x/

) f p.t; x/ � Cd;˛"
�4
.t;x/ � Cd;˛ max

®
t�2;

MQF.t;x/
�

¯
:

Finally, because MQ is of weak type .1; 1/, kMQF kL1;1 � CkF kL1 . Together with (25)
we complete the proof of the theorem.

Funding. The author was partially supported by the NSF grant DMS-RTG 1840314 (PI:
Alexis Vasseur).
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